Application of Frequent Itemsets Mining to Analyze Patterns of One-Stop Visits in Taiwan

نویسندگان

  • Chun-Yi Tu
  • Tzeng-Ji Chen
  • Li-Fang Chou
چکیده

BACKGROUND The free choice of health care facilities without limitations on frequency of visits within the National Health Insurance in Taiwan gives rise to not only a high number of annual ambulatory visits per capita but also a unique "one-stop shopping"phenomenon, which refers to a patient' visits to several specialties of the same healthcare facility in one day. The visits to multiple physicians would increase the potential risk of polypharmacy. The aim of this study was to analyze the frequency and patterns of one-stop visits in Taiwan. METHODOLOGY/PRINCIPAL FINDINGS The claims datasets of 1 million nationally representative people within Taiwan's National Health Insurance in 2005 were used to calculate the number of patients with one-stop visits. The frequent itemsets mining was applied to compute the combination patterns of specialties in the one-stop visits. Among the total 13,682,469 ambulatory care visits in 2005, one-stop visits occurred 144,132 times and involved 296,822 visits (2.2% of all visits) by 66,294 (6.6%) persons. People tended to have this behavior with age and the percentage reached 27.5% (5,662 in 20,579) in the age group ≥80 years. In general, women were more likely to have one-stop visits than men (7.2% vs. 6.0%). Internal medicine plus ophthalmology was the most frequent combination with a visited frequency of 3,552 times (2.5%), followed by cardiology plus neurology with 3,183 times (2.2%). The most frequent three-specialty combination, cardiology plus neurology and gastroenterology, occurred only 111 times. CONCLUSIONS/SIGNIFICANCE Without the novel computational technique, it would be hardly possible to analyze the extremely diverse combination patterns of specialties in one-stop visits. The results of the study could provide useful information either for the hospital manager to set up integrated services or for the policymaker to rebuild the health care system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data sanitization in association rule mining based on impact factor

Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...

متن کامل

A New Algorithm for High Average-utility Itemset Mining

High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...

متن کامل

MINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS

This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...

متن کامل

A Novel Data Mining Method to Find the Frequent Patterns from Predefined Itemsets in Huge Dataset Using TMPIFPMM

Abstract-Association rule mining is one of the important data mining techniques. It finds correlations among attributes in huge dataset. Those correlations are used to improve the strategy of the future business. The core process of association rule mining is to find the frequent patterns (itemsets) in huge dataset. Countless algorithms are available in the literature to find the frequent items...

متن کامل

High Performance Mining of Maximal Frequent Itemsets

Mining frequent itemsets is instrumental for mining association rules, correlations, multi-dimensional patterns, etc. Most existing work focuses on mining all frequent itemsets. However, since any subset of a frequent set also is frequent, it is sufficient to mine only the set of maximal frequent itemsets. In this paper, we study the performance of two existing approaches, Genmax and Mafia, for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011